6 research outputs found

    Lines on projective varieties and applications

    Full text link
    The first part of this note contains a review of basic properties of the variety of lines contained in an embedded projective variety and passing through a general point. In particular we provide a detailed proof that for varieties defined by quadratic equations the base locus of the projective second fundamental form at a general point coincides, as a scheme, with the variety of lines. The second part concerns the problem of extending embedded projective manifolds, using the geometry of the variety of lines. Some applications to the case of homogeneous manifolds are included.Comment: 15 pages. One example removed; one remark and some references added; typos correcte

    Turbulent Gas in Lensed Planck-Selected Starbursts at z ∼ 1-3.5

    Get PDF
    Dusty star-forming galaxies at high redshift (1 \u3c z \u3c 3) represent the most intense star-forming regions in the universe. Key aspects to these processes are the gas heating and cooling mechanisms, and although it is well known that these galaxies are gas-rich, little is known about the gas excitation conditions. Only a few detailed radiative transfer studies have been carried out owing to a lack of multiple line detections per galaxy. Here we examine these processes in a sample of 24 strongly lensed star-forming galaxies identified by the Planck satellite (LPs) at z ∼ 1.1-3.5. We analyze 162 CO rotational transitions (ranging from J up = 1 to 12) and 37 atomic carbon fine-structure lines ([C i]) in order to characterize the physical conditions of the gas in the sample of LPs. We simultaneously fit the CO and [C i] lines and the dust continuum emission, using two different non-LTE, radiative transfer models. The first model represents a two-component gas density, while the second assumes a turbulence-driven lognormal gas density distribution. These LPs are among the most gas-rich, IR-luminous galaxies ever observed (μL L IR(8-1000 μm) ∼ 1013-14.6 L⊙; «μLMISM» = (2.7 ± 1.2) × 1012 Mo˙ with μL ∼ 10-30 the average lens magnification factor). Our results suggest that the turbulent interstellar medium present in the LPs can be well characterized by a high turbulent velocity dispersion («ΔVturb» ∼ 100 km s-1) and ratios of gas kinetic temperature to dust temperature «T kin/T d» ∼ 2.5, sustained on scales larger than a few kiloparsecs. We speculate that the average surface density of the molecular gas mass and IR luminosity, Σ ∼ 103-4 M o˙ pc-2 and Σ ∼ 1011-12 L o˙ kpc-2, arise from both stellar mechanical feedback and a steady momentum injection from the accretion of intergalactic gas

    FRIPON: a worldwide network to track incoming meteoroids

    No full text
    (IF 5.80; Q1)International audienceContext. Until recently, camera networks designed for monitoring fireballs worldwide were not fully automated, implying that in case of a meteorite fall, the recovery campaign was rarely immediate. This was an important limiting factor as the most fragile-hence precious-meteorites must be recovered rapidly to avoid their alteration. Aims. The Fireball Recovery and InterPlanetary Observation Network (FRIPON) scientific project was designed to overcome this limitation. This network comprises a fully automated camera and radio network deployed over a significant fraction of western Europe and a small fraction of Canada. As of today, it consists of 150 cameras and 25 European radio receivers and covers an area of about 1.5 × 10 6 km 2. Methods. The FRIPON network, fully operational since 2018, has been monitoring meteoroid entries since 2016, thereby allowing the characterization of their dynamical and physical properties. In addition, the level of automation of the network makes it possible to trigger a meteorite recovery campaign only a few hours after it reaches the surface of the Earth. Recovery campaigns are only organized for meteorites with final masses estimated of at least 500 g, which is about one event per year in France. No recovery campaign is organized in the case of smaller final masses on the order of 50 to 100 g, which happens about three times a year; instead, the information is delivered to the local media so that it can reach the inhabitants living in the vicinity of the fall. Results. Nearly 4000 meteoroids have been detected so far and characterized by FRIPON. The distribution of their orbits appears to be bimodal, with a cometary population and a main belt population. Sporadic meteors amount to about 55% of all meteors. A first estimate of the absolute meteoroid flux (mag <-5; meteoroid size ≥∼1 cm) amounts to 1250/yr/10 6 km 2. This value is compatible with previous estimates. Finally, the first meteorite was recovered in Italy (Cavezzo, January 2020) thanks to the PRISMA network, a component of the FRIPON science project

    FRIPON: a worldwide network to track incoming meteoroids

    Get PDF
    Context: Until recently, camera networks designed for monitoring fireballs worldwide were not fully automated, implying that in case of a meteorite fall, the recovery campaign was rarely immediate. This was an important limiting factor as the most fragile – hence precious – meteorites must be recovered rapidly to avoid their alteration. Aims: The Fireball Recovery and InterPlanetary Observation Network (FRIPON) scientific project was designed to overcome this limitation. This network comprises a fully automated camera and radio network deployed over a significant fraction of western Europe and a small fraction of Canada. As of today, it consists of 150 cameras and 25 European radio receivers and covers an area of about 1.5 × 106 km2. Methods: The FRIPON network, fully operational since 2018, has been monitoring meteoroid entries since 2016, thereby allowing the characterization of their dynamical and physical properties. In addition, the level of automation of the network makes it possible to trigger a meteorite recovery campaign only a few hours after it reaches the surface of the Earth. Recovery campaigns are only organized for meteorites with final masses estimated of at least 500 g, which is about one event per year in France. No recovery campaign is organized in the case of smaller final masses on the order of 50 to 100 g, which happens about three times a year; instead, the information is delivered to the local media so that it can reach the inhabitants living in the vicinity of the fall. Results: Nearly 4000 meteoroids have been detected so far and characterized by FRIPON. The distribution of their orbits appears to be bimodal, with a cometary population and a main belt population. Sporadic meteors amount to about 55% of all meteors. A first estimate of the absolute meteoroid flux (mag < –5; meteoroid size ≥~1 cm) amounts to 1250/yr/106 km2. This value is compatible with previous estimates. Finally, the first meteorite was recovered in Italy (Cavezzo, January 2020) thanks to the PRISMA network, a component of the FRIPON science project
    corecore